Particle number scaling for diffusion-induced dissipation in graphene and carbon nanotube nanomechanical resonators
نویسندگان
چکیده
When a contaminant diffuses on the surface of a nanomechanical resonator, the motions of the two become correlated. Despite being a high-order effect in the resonator-particle coupling, such correlations affect the system dynamics by inducing dissipation of the resonator energy. Here, we consider this diffusion-induced dissipation in the cases of multiple particles adsorbed on carbon nanotube and graphene resonators. By solving the stochastic equations of motion, we simulate the ringdown of the resonator, in order to determine the resonator energy decay rate. We find two different scalings with the number of adsorbed particles K and particle mass m. In the regime where the adsorbates are inertially trapped at an antinode of vibration, the dissipation rate scales with the total adsorbed mass ∝ Km. In contrast, in the regime where particles diffuse freely over the resonator, the dissipation rate scales as the product of the total adsorbed mass and the individual particle mass: ∝ Km2.
منابع مشابه
News: Putting a damper on nanoresonators.
The harmonic oscillator holds a special place in the history of science and technology, having an important role in the development of both classical and quantum physics. Examples include Galileo’s pendulum, resonant electrical circuits and molecular vibrations. In micro and nanomechanical systems, the prototypical harmonic oscillator is a mechanical resonator — a beam of material that oscillat...
متن کاملFrequency fluctuations in silicon nanoresonators Supplementary Information
Supplementary Figure S1. Complete mapping of datapoints and references of Figure 1 in the main text. 1. Chaste, J. et al. A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol. 7, 301–304 (2012). After annealing 2. Chaste, J. et al. A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol. 7, 301–304 (2012). Before annealing 3. Jensen, K., Kim, K. & Zettl, A. ...
متن کاملNanofluidics of Single-Crystal Diamond Nanomechanical Resonators.
Single-crystal diamond nanomechanical resonators are being developed for countless applications. A number of these applications require that the resonator be operated in a fluid, that is, a gas or a liquid. Here, we investigate the fluid dynamics of single-crystal diamond nanomechanical resonators in the form of nanocantilevers. First, we measure the pressure-dependent dissipation of diamond na...
متن کاملDiffusion-induced bistability of driven nanomechanical resonators.
We study nanomechanical resonators with frequency fluctuations due to diffusion of absorbed particles. The diffusion depends on the vibration amplitude through inertial effect. We find that, if the diffusion coefficient D is sufficiently large, the resonator response to periodic driving displays bistability. The lifetime of the coexisting vibrational states exponentially increases with increasi...
متن کاملHigh-Q nanomechanics via destructive interference of elastic waves.
Mechanical dissipation poses a ubiquitous challenge to the performance of nanomechanical devices. Here we analyze the support-induced dissipation of high-stress nanomechanical resonators. We develop a model for this loss mechanism and test it on Si(3)N(4) membranes with circular and square geometries. The measured Q values of different harmonics present a nonmonotonic behavior which is successf...
متن کامل